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ABSTRACT

Robotic controllers frequently operate under constraints. Often, the
constraints are imperfectly or completely unknown. In this paper, the
Lagrangian dynamics of a planar robot arm are expressed as a function of a
globally unknown constraint. Optical sensors are utilized to produce
estimates of local constraints. These sensors guide the end effecter over the
unknown object. This learning phase generates noisy joint position
encoders and tachometers data. A extended continuous-discrete Kalman
filter based estimator processes the measurements to compute an estimate of
the parametrized object. The output of the estimator is input to a
suboptimal combiner. The gradient of the estimated parameter vector is
utilized to compute the constraint matrix. During the learning phase, the
combiner computes a weighted combination of estimated and measured
constraints. The controller uses the constraint estimate to guide the robot
arm. Thus a feedback loop is closed around the constraints. As the statistics
of the estimated constraint matrix become favorable compared to the
stationary statistics of the sensors, the learned constraints gradually reduce the
weight of the sensory data.

INTRODUCTION

Robotic tasks in a space environment can benefit from autonomous capability, For
example, a sensor placed on the Space Shuttle robot am~ could help guide the arm to
grapple and secure satellites on retieval missions. For the expected Space Station,
robotic manipulators capable of moving in a complex environment with only high
level operator supervision are of obvious interest. In the future space environments
we envision, it is undesirable that the manipulators contact accidently with other
objects. The implications are obvious if, for example, a satellite brought in for repair
were to bump the Space Station because of an operator error. The capability to operate
autonomously in a space environment is thus a general problem.

In this paper, we formulate the problem in a general context that is useful in many
applications. The problem considered is that of motion of a manipulator about an
unknown object without a global model of the constraints imposed by the unknown
object. A global constraint model implies complete knowledge of the object shape.
Without a global model, the constraints are nonholonomic.  Nonholornic constraints
are locally sensd, in this paper, by placing a sensor on the manipulator end effecter.
The sensor data provides information to move the manipulator instantaneously, or
locally, while satisfying the sensd constraints, The sensor in this paper is optical.
Thus, once the end effecter of the manipulator is placed in proximity to an unknown
object by the operator, the controller is able to navigate about the object
autonomously. This phase of autonomous movement is denoted the learning phase. In
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the learning phase, sensed data from the optical sensor, the joint position encoders,
and tachometers are processed in an estimator which begins to estimate the unknown
object’s shape. The estimator is helped greatly because we parametrize the object. In
the simulation to follow, we let the object be one of a class of generalized quadratics.
Future work will be directed towards removing this assumption. As the, statistics of
the estimated object become more favorable compartxl to the stationary statistics of the
optical sensor, the controller weights more heavily the estimated object compared to
the optical sensor.

OPEN LOOP DYNAMICS AND CONTROLLER DESIGN

Object Induced Constraints

In general, object constraints are characterized by a set of holonomic hypersurfaces
constraining the 6 dimensional Euclidean coordinate space of the end effecter. Let an
end effecter with k degrees of freedom, k < = 6, be describtxl by a position vector r;
and let r be constrained by m real-valued hypersurfaces:

pi(r)=O;  i=l,2 ..., m ;  m<k; pi:Rk +R1 (1)

It is assumed the hypersurfaces are twice differentiable with respect to r over any joint
trajectory of interest. Then from Mason [1]:

*—i= o; pt = [pl ,“ “ “>pml
& (2)

where an overdot is the time derivative and the superscript t is the transpose. Let C’ be
a real-valued matrix representing the sensed nonholonomic constraint such that:

(3)

Holonomic constraints have been previously described by Mason. The holonomic
constraints are globally known for a particular object, Many nonholomonic
constraints, on the other hand, constrain only the local motion of the joint trajectory
and not the joint coordinates. Therefore, for an unknown object, @ must be sensed
locally on the object. The approach here is to utilize optical sensors on on the end
effecter to sense the instantaneous constraints.

Joint Coordinates, Constraints, and Nominal Trajectories

A manipulator with n degrees of freedom is described by a joint vector q of dimension
n. Assume the joint angles are subject to constraints, Let there exist a function f
expressing the effecter position in terms of joint coordinates and let f be twice
differentiable with respect to q. Define the following joint constraint marnx via the
system Jacobian:



af
f=—

aq
q=oq

(4)

Although the analytical form of the Jacobian is known for a particular manipulator, the
sensed constraints Eq. (3) are not a priori known, The composite constraint matrix is
defined from Eq. (3) and (4):

C“i=c”oq=cq=o (5)

It is obvious that only (n - m) of the joint velocities are independent. Denote by a
transformation matrix Q the independent subspace and let a superscript d indicate the
nominal (stead y state) trajectory:

[1Q4d= + ; c Q1 = [Q.m ,1 GJ ;
qm (6)

where subscripts denote dimension. Solving Eq. (5) using the definitions in Eq. (6)
yields:

‘d’Q’[*l ‘-m (7)

where I is the identity matrix of appropriate dimension. The nominal acceleration
vector is obtained by differentiating Eq (7).

Joint Commands

A hybrid joint command will be derived as a function of the nominal trajectory. The
Lagrangian dynamics of mechanical manipulators is well known from a variety of
papers [2]. The formulation here will be in the most general context. Therefore,
contact forces will be included in the dynamics. For the subsequent simulation, desired
contact forces are set to zero indicating that the object is not physically contacted. The
dynamics, assuming a stable controller, on the nominal trajectory are:

M(q) qd + h(q,qd) + g(q) = Ud +- Ct ~ ; Ud = up i- U$; uf=c~f (8)

where M is the inertial matrix, h is the Coriolis vector, g is the gravity moment, and
the control input is composed of a velocity teml and a desired force term (Y9.
Expansion of the dynamics about the nominal trajectory yields the error system from
which state feedback is computed to stabilize the motion:



. Aq=AAq+BAu (9)

A block diagram of the controller of Figure 1. shows the servo loops about the
constraints.
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Figure 1. Nominal Controller with Velocity Servo and Zero Desired Contact Forces (~ )

OBJECT ESTIMATION

Object Estimator

The goal of the controller design is to “learn” the object. The problem is made specific
by assuming that the object is a member of a class of objects. Consider the class of
generalized planar quadratics parametrized by 5 coordinates P = [PI ~- o “~Psl.  The
constraint matrix in Eq. (5) is defined by requiring the end effecter to maintain an
attitude that is normal to the object (to obtain accurate ranging data) while moving
tangentially along the object at a constant velocity (so that the object can be ‘learrd’ ).
Define the object pararneterization to be a state. This make obvious the coupling,
between the state and the parameter vectors. The state vector and the object
“dynamics” are:

X+l,ql ; p=o; p(o)=po ( l o )
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Therefore the object estimation problem is reduced to estimating an unknown constant
vector. The value of the initial object estimate is set from the a priori knowledge of

. the object. The adjoined manipulator/objwt  state vector is ‘t = [q! q? PI. The extended
Kalman filter, evaluated on the nominal motion, time propagation in the absence of
measurements is:

P= A@ P+ PA@+GV@ (11)

where V is the spectral density of the actuator noise. The measurement update is:

K= P-(tk) Ht [H P-(tk) Ht+R ]-1 ; P(tk) ~1-KH)P(tk);  ;=;~ + K [%- H~~ ] (12)

Measurements h consists of joint angles, joint velocities, and object normal vector, in
end effecter ccmrdinates. The measurement covariance is R. Then

(13)

Simulation

The object constraint data is sensed optically with a trio of ranging sensors providing
three contiguous distance measurements. A cubic spline is fit to the 3-tuple range
data, from which the local object normal is computed to yield the the constraint
matrix. We also model the ranging optics error as uniformly distributed over 10 mm,
3 sigma [4] [5]. One sigma values for angle and tachometer noise are 1 degree and 1
degree/second, respectively. The actuator noise is considered small compared to
measurement noise such that V=O is assumed. Eigenvalues of the closed loop error
dynamics are set to -10. and the measurement update rate is 10 milliseconds. The
simulation results of Figure 2. show the convergence of the object estimate occurs in
about 2 time ‘constants, physically indicative of the strong coupling the object has into
the manipulator motion.
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Figure 2. Object Parametrization: Estimated(Solid) & Actual(Dashed)
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CONCLUSION

Ageneralized controllertrackedan unknown generaliztxi quadratic utilizing opticsto
sense the nonholonomic constraints. A Kalman estimator converged to the object
parameterization vector.
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